Cortical regulation of helping behaviour towards others in pain

0
15
  • Wu, Y. E. & Hong, W. Neural basis of prosocial behavior. Trends Neurosci. 45, 749–762 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Waal, F. B. M. & Preston, S. D. Mammalian empathy: behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18, 498–509 (2017).

    PubMed 

    Google Scholar
     

  • Keysers, C., Knapska, E., Moita, M. A. & Gazzola, V. Emotional contagion and prosocial behavior in rodents. Trends Cogn. Sci. 26, 688–706 (2022).

    PubMed 

    Google Scholar
     

  • Ferretti, V. & Papaleo, F. Understanding others: emotion recognition in humans and other animals. Genes Brain Behav. 18, e12544 (2019).

    PubMed 

    Google Scholar
     

  • Sterley, T.-L. & Bains, J. S. Social communication of affective states. Curr. Opin. Neurobiol. 68, 44–51 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Melis, A. P. The evolutionary roots of prosociality: the case of instrumental helping. Curr. Opin. Psychol. 20, 82–86 (2018).

    PubMed 

    Google Scholar
     

  • Dunfield, K. A. A construct divided: prosocial behavior as helping, sharing, and comforting subtypes. Front. Psychol. 5, 958 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, K. Y. & Hong, W. Neural mechanisms of comforting: prosocial touch and stress buffering. Horm. Behav. 153, 105391 (2023).

    PubMed 

    Google Scholar
     

  • Bartal, I. B.-A., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430 (2011).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, A. K., Koroly, M. J., Schattenkerk, M. E., Malt, R. A. & Young, M. Nerve growth factor: acceleration of the rate of wound healing in mice. Proc. Natl Acad. Sci. USA 77, 4379–4381 (1980).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berckmans, R. J., Sturk, A., Tienen, L. M., van, Schaap, M. C. L. & Nieuwland, R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117, 3172–3180 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Day, B. J. The science of licking your wounds: function of oxidants in the innate immune system. Biochem. Pharmacol. 163, 451–457 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. Somatosensory cortical signature of facial nociception and vibrotactile touch–induced analgesia. Sci. Adv. 8, eabn6530 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, T. et al. Identifying the pathways required for coping behaviours associated with sustained pain. Nature 565, 86–90 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutson, J. M., Niall, M., Evans, D. & Fowler, R. Effect of salivary glands on wound contraction in mice. Nature 279, 793–795 (1979).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dittus, W. P. J. & Ratnayeke, S. M. Individual and social behavioral responses to injury in wild toque macaques (Macaca sinica). Int. J. Primatol. 10, 215–234 (1989).


    Google Scholar
     

  • Li, C.-L. et al. Validating rat model of empathy for pain: effects of pain expressions in social partners. Front. Behav. Neurosci. 12, 242 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lariviere, W. R. & Melzack, R. The bee venom test: a new tonic-pain test. Pain 66, 271–277 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. E. et al. Neural control of affiliative touch in prosocial interaction. Nature 599, 262–267 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogil, J. S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Duan, B., Cheng, L. & Ma, Q. Spinal circuits transmitting mechanical pain and itch. Neurosci. Bull. 34, 186–193 (2018).

    PubMed 

    Google Scholar
     

  • Smith, M. L., Asada, N. & Malenka, R. C. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science 371, 153–159 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrillo, M. et al. Emotional mirror neurons in the rat’s anterior cingulate cortex. Curr. Biol. 29, 1301–1312 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allsop, S. A. et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173, 1329–1342 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez-Lallement, J. et al. Harm to others acts as a negative reinforcer in rats. Curr. Biol. 30, 949–961 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lockwood, P. L. The anatomy of empathy: vicarious experience and disorders of social cognition. Behav. Brain Res. 311, 255–266 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansen, J. P., Fields, H. L. & Manning, B. H. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 98, 8077–8082 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, N., Tan, L., Tate, K. & Okada, M. Rats demonstrate helping behavior toward a soaked conspecific. Anim. Cogn. 18, 1039–1047 (2015).

    PubMed 

    Google Scholar
     

  • Ueno, H. et al. Rescue-like behaviour in mice is mediated by their interest in the restraint tool. Sci. Rep. 9, 10648 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burkett, J. P. et al. Oxytocin-dependent consolation behavior in rodents. Science 351, 375–378 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langford, D. J. et al. Social modulation of pain as evidence for empathy in mice. Science 312, 1967–1970 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernhardt, B. C. & Singer, T. The neural basis of empathy. Annu. Rev. Neurosci. 35, 1–23 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, H. L. et al. Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron 111, 797–806 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gangopadhyay, P., Chawla, M., Monte, O. D. & Chang, S. W. C. Prefrontal–amygdala circuits in social decision-making. Nat. Neurosci. 24, 5–18 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Haroush, K. & Williams, Z. M. Neuronal prediction of opponent’s behavior during cooperative social interchange in primates. Cell 160, 1233–1245 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paulus, M., Kühn-Popp, N., Licata, M., Sodian, B. & Meinhardt, J. Neural correlates of prosocial behavior in infancy: different neurophysiological mechanisms support the emergence of helping and comforting. Neuroimage 66, 522–530 (2013).

    PubMed 

    Google Scholar
     

  • Paxinos, G. & Franklin, K. B. J. The Mouse brain in Stereotaxic Coordinates, 3rd edn (Academic Press, 2008).

  • Tjølsen, A., Berge, O.-G., Hunskaar, S., Rosland, J. H. & Hole, K. The formalin test: an evaluation of the method. Pain 51, 5–17 (1992).

    PubMed 

    Google Scholar
     

  • Chen, J., Guan, S.-M., Sun, W. & Fu, H. Melittin, the major pain-producing substance of bee venom. Neurosci. Bull. 32, 265–272 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T., Sandi, C. & Hu, H. Advances in understanding neural mechanisms of social dominance. Curr. Opin. Neurobiol. 49, 99–107 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2021).


    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. et al. Cortical representations of conspecific sex shape social behavior. Neuron 107, 941–953 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachibana, R. O., Kanno, K., Okabe, S., Kobayasi, K. I. & Okanoya, K. USVSEG: a robust method for segmentation of ultrasonic vocalizations in rodents. PLoS ONE 15, e0228907 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here